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Numerical boundary conditions for globally mass conservative
methods to solve the shallow-water equations

and applied to river �ow
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SUMMARY

A revision of some well-known discretization techniques for the numerical boundary conditions in 1D
shallow-water �ow models is presented. More recent options are also considered in the search for a
fully conservative technique that is able to preserve the good properties of a conservative scheme used
for the interior points. Two conservative numerical schemes are used as representatives of the families
of explicit and implicit numerical methods. The implementation of the di�erent boundary options to
these schemes is compared by means of the simulation of several test cases with exact solution. The
schemes with the global conservation boundary discretization are applied to the simulation of a real
river �ood wave leading to very satisfactory results. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: boundary conditions; conservative methods; source terms; shallow water; mass con-
servation; discontinuous �ow

1. INTRODUCTION

This work deals essentially with the discrete representation of the boundary conditions in the
context of 1D shallow-water �ow problems. This is a minor section in most of the reference
papers but, in the present work, the emphasis is put on the in�uence, that a careless method
at the boundaries can have on the global numerical solution.
It is well known that conservative methods are the best option for the numerical solution

of conservation laws. These methods furnish a good discrete representation in which all the
inter-cell contributions cancel out so that the only variations are due to source terms and
�ow at the boundaries. In order to reach the correct numerical solution in a general unsteady
case, it is clear that the numerical scheme chosen for the interior points is as important as

∗Correspondence to: P. Garc��a-Navarro, �Area de Mec�anica de Fluidos, Centro Polit�ecnico Superior, Universidad de
Zaragoza, c=Mar��a de Luna 3, 50018 Zaragoza, Spain.

†E-mail: pigar@unizar.es
‡E-mail: jburguete@able.es
§E-mail: jmurillo@mafalda.cps.unizar.es

Received 12 April 2005
Revised 20 June 2005

Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 22 August 2005



586 J. BURGUETE, P. GARC�IA-NAVARRO AND J. MURILLO

the source term treatment and the method applied to discretize the boundary conditions. The
question of the best options to deal with the source terms has previously been treated for
instance in References [1–5].
As for the boundary conditions, the starting point is the theory of characteristics. It provides

a clear idea of the space–time directions followed by the information, of the in�uence regions
and of the required number of boundary conditions to have a well-posed problem [6]. When,
in the x–t plane, a characteristic curve enters the computational domain, the region of in�uence
is exterior to the domain and an additional condition is required. This is called a physical
boundary condition. On the other hand, if the curve leaves the domain, the region of in�uence
falls within the computational domain and the boundary condition depends exclusively on the
interior variables. As inlet and outlet boundary points represent a cut-o� of the domain, one
would like to solve the governing equations using the same scheme even at the boundary.
However, the basic scheme must be adapted to the fact that only the interior points can
be involved in this calculation. These are called numerical boundary conditions, not actual
boundary conditions, and their correct discrete representation is the main objective of this
work.
Hartree, according to Fox [7], proposed an iterative method based on linear interpola-

tion of the Riemann invariants. The methods of characteristic variable extrapolation (CVE),
applied originally in �uid mechanics by Yee et al. [8, 9], are much simpler and lead to
similar results. Even simpler approaches for the 1D model are the methods based on the local
mass conservation equation, proposed by Jin and Fread [10], leading to similar results as
shown by Villanueva [11] in several examples in rivers and irregular channels.
All the methods proposed in the past to discretize the numerical boundary conditions

generate error in the global mass conservation (GMC). In this work, a method based on the
integral form of the mass conservation equation extended to the full domain (GMC) is also
considered. It was �rst introduced in References [4, 5, 12] and preliminarily used. The tech-
nique can be adapted to any conservative numerical scheme used for the interior points leading
to a machine accuracy GMC in all steady or unsteady situations. As an example, the tech-
nique will be derived for both, an explicit and an implicit conservative method, using them as
representative of the two main families of numerical schemes in 1D models. In both cases this
technique is sensitive to the time step size in presence of unsteady discontinuous boundary
conditions. A correction strategy to avoid numerical di�culties in these cases is suggested.
Four di�erent methods to discretize the numerical conditions are detailed and their per-

formance is compared using a few test cases with analytical solution. Some of these test
cases involve unsteady discontinuous boundary conditions and some of them deal with steady
continuous �ow. The best option is chosen and applied �nally to a river �ow test case.

2. BASIC EQUATIONS

One-dimensional shallow-water �ows can be modelled by means of the Saint-Venant equa-
tions [13]. The conservative form of such equations admits a vectorial expression as follows:

@u(x; t)
@t

+
dFc(x; u)
dx

=Sc(x; u) (1)
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with u the vector of conserved variables, Fc the �uxes and Sc the source terms:

u=
(
A
Q

)
; Fc=

⎛
⎝ Q

Q2

A
+ gI1

⎞
⎠ ; Sc=

(
0

g [I2 + A(S0 − Sf )]

)
(2)

where A is the wetted cross section, Q the discharge, g the acceleration constant of gravity, S0
the bed slope and Sf the friction slope that is commonly modelled with the Gauckler–Manning
law [14, 15]:

Sf =
n2Q|Q|P4=3

A10=3
(3)

In this friction law n is the Manning’s roughness coe�cient and P is the wetted perimeter.
Furthermore, I1 and I2 represent the pressure forces:

I1 =
∫ h

0
�(x; z′)(h − z′) d z′; I2 =

∫ h

0

@�(x; z′)
@x

(h − z′) d z′ (4)

where h is the water depth and � is the cross-section width at a distance z′ of the section
bottom.
The integrals of the conservative form are di�cult to deal with, in general. They can be

eliminated by transformation of the above system into the quasi-conservative form [4]:

@u(x; t)
@t

+
@Fqc(u)

@x
= Sqc(x; u) (5)

being Fqc and Sqc, respectively, the �ux and source terms of the quasi-conservative form of
the equations:

Fqc=

⎛
⎝ Q

Q2

A

⎞
⎠ ; Sqc=

⎛
⎝ 0

− gA
(
@zs
@x
+ Sf

)⎞⎠ (6)

with zs the vertical coordinate of the free surface.
From the conservative form (1), it is possible to derive a non-conservative form by

developing the spatial derivative [3]:

@u(x; t)
@t

+ J(x; u)
@u(x; t)

@x
= Snc(x; u) (7)

where J= @Fc=@u is the Jacobian of the conservative �ux and Snc=Sc−(@Fc=@x) is the source
term of the non-conservative form:

J=
(

0 1
c2 − u2 2u

)
; Snc=

⎛
⎝ 0

− gA
(
@zs
@x
+ Sf

)
+ c2

@A
@x

⎞
⎠ (8)

Here B is the wetted cross-section top width, u=Q=A is the �ow velocity and c=
√

g(A=B)
is the speed of the small surface waves.
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The non-conservative equations (7) can be decoupled if the Jacobian is diagonalized and
a set of independent equations is obtained. Let P be the matrix that makes diagonal the �ux
Jacobian J. This matrix is made of the eigenvectors of J so that

J=P�P−1; �=P−1JP (9)

with � the diagonal matrix with the J’s eigenvalues on the diagonal. In our model

P=
(

1 1
u+ c u − c

)
; P−1 =

1
2c

(
c − u 1
c+ u −1

)
; �=

(
u+ c 0
0 u − c

)
(10)

The characteristic variables w are de�ned according to the following property at the di�erential
level:

dw = P−1 du=
1
2c

(
(c − u)dA+ dQ
(c+ u)dA − dQ

)
(11)

Using this into (7), the characteristic form of the equations can be obtained:

@w(x; t)
@t

+�(x;w)
@w(x; t)

@x
= P−1(x;w)Snc(x;w) (12)

It is worth noting that the characteristic variables are not de�ned, in general, since, unless
for linear systems, it is not possible to �nd a set of variables holding (11). However, it is
possible to use their di�erences and refer to them as a combination of the di�erences of the
conserved variables.
The di�erential forms of the shallow-water equations (1), (5), (7) or (12), are equivalent

and all valid for problems with di�erentiable and continuous solutions but they all fail in cases
with non-di�erentiable or discontinuous solutions. In these cases, the mass and momentum
conservation equations must be formulated in integral form:

∫ x0+� x

x0
[u(x; t0 + �t)− u(x; t0)] dx +

∫ t0+�t

t0
[Fi(x0 + �x; t)− Fi(x0; t)] dt

=
∫ t0+�t

t0
Si(t) dt (13)

with Fi and Si, respectively, the �ux and source terms of the integral form. In the 1D shallow-
water �ow model with cross-sectional average, these are:

Fi=

⎛
⎝ Q

Q2

A
+ gI1

⎞
⎠ ; Si=

⎛
⎝ 0∫

Sb
[ghnbx + �b] dSb

⎞
⎠ (14)

with Sb representing the solid surface in the control volume and nbx the x component of its
normal vector. This is the most general form of the equations and is valid for problems with
discontinuous solution.
The �ow equations in integral form (13) can be used to model �ows involving disconti-

nuities. If the discontinuity is located at x0 at time t0 and the reference system is chosen to
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move at the instantaneous speed of propagation of the discontinuity U , the integral equations
for a volume centred around x0 are

∫ x0+(� x=2)

x0−(� x=2)
[A(x; t0 + �t)− A(x; t0)]dx

+
∫ t0+�t

t0

[
Q
(
x0 +

�x
2

; t
)

− Q
(
x0 − �x

2
; t
)]

dt=0

∫ x0+(� x=2)

x0−(� x=2)
[Q(x; t0 + �t)− Q(x; t0)] dx +

∫ t0+�t

t0

[(
Q2

A
+ gI1

)
x0+(� x=2); t

−
(
Q2

A
+ gI1

)
x0−(� x=2); t

]
dt=

∫ t0+�t

t0
dt

{∫
Sb(t)
[ghnbx + �b]x; y; t dSb

+
∫ x0+(� x=2)

x0−(� x=2)
A(x; t)

@U (t)
@t

dx

}
(15)

The last term appears since the moving reference can be non-inertial. By seeking the limit
when �x tends to zero, the integrals of the functions between x0 − (�x=2) and x0 + (�x=2)
disappear and the contribution of the friction forces on the element cancels out, leading to
the following equations of shock propagation in the moving reference system:

�(Au) = 0

�(Au2 + gI1) =
∫
Sb(t)
[ghnbx]x; y; t dSb

(16)

�f represents the change in f across the discontinuity. The integral over the solid surface will
only be di�erent from zero when the bed is discontinuous at x0 (a bottom step or a sudden
contraction=expansion), since only then the solid surface Sb will have a non-in�nitesimal value
along �x. In that case the integral represents the x component of the pressure force on the
obstacle. If the solid bed is continuous, going back to the absolute reference system, the
following equations are obtained for the �ow discontinuity:

�[A(u − U )] = 0

�[A(u − U )2 + gI1] = 0
(17)

These are the shallow-water �ow version of the Rankine–Hugoniot [16] equations for 1D
shocks in �uids.

3. NUMERICAL SCHEMES

Having stated that our main goal is the derivation of a globally exact conservative scheme for
the shallow-water equations, conservative numerical methods are required both for the interior
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and the boundary points. This section is devoted to that challenge. The following vector is
de�ned:

Gi+(1=2) ≡
(
Sc − �Fc

�x

)
i+(1=2)

=
(
Sqc − �Fqc

�x

)
i+(1=2)

=
(
Snc − J�u

�x

)
i+(1=2)

(18)

using the notation �fi+(1=2) =fi+1 − fi, fi+(1=2) = (fi+1 + fi)=2 so that the conservative, quasi-
conservative and non-conservative forms are equivalent. In order to enforce the two conditions
involved in that equivalence it is necessary to also de�ne:

(gI2)i+(1=2) =
(
�I1
�x

− A
�h
�x

)
i+(1=2)

ũi+(1=2) =
Qi+1=

√
Ai+1 +Qi=

√
Ai√

Ai+1 +
√
Ai

; c̃i+(1=2) =

√
g
Ai+(1=2)

Bi+(1=2)

(19)

These average values, proposed in References [2, 4], are an extension of the Roe’s average [17]
to hyperbolic equations with source terms having explicit spatial dependence. They lead to
identical results either using the conservative, quasi-conservative or non-conservative form of
the equations. For the sake of simplicity, however, the quasi-conservative form will be used
in this work [4].
When a semi-implicit treatment of source term is made:

S≈ �Sn+1 + (1− �)Sn ≈Sn + �Kn�un (20)

where �∈ [0; 1] is an implicit parameter for the source term and K= @S=@u is the source term
Jacobian:

K=

⎛
⎝ 0 0

− g
[
@zs
@x

− 1
B
@A
@x
+ Sf

(
4A
3P

@P
@A

− 7
3

)]
−2gSf

u

⎞
⎠ (21)

then, conservative schemes with non-pointwise source term can be formulated in the form of
a wave decomposition as [3]:

(1− ��tKn
i )�u

n
i =�t(GRi+(1=2) +G

L
i−(1=2)) (22)

where GR;Li+(1=2) represent the particular decomposition of every scheme. This kind of numerical
scheme is conservative as long as a nodal numerical �ux FTi can be de�ned so that [3]:

FTi+1 − FTi = �FRi+(1=2) + �FLi+(1=2) (23)

Two numerical schemes will be next outlined as the best candidates of the families of explicit
and implicit conservative schemes. The necessary steps to implement all the boundary methods
considered in this work will be described. From our previous experience, the second-order
upwind TVD explicit scheme has been chosen as the most accurate and the �rst-order upwind
semi-explicit scheme has been selected for the property of being the only scheme able to deal
with non-linear shock propagation at high CFL numbers.
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3.1. Second-order TVD scheme

A second-order in space and time TVD scheme with non-pointwise source term as proposed
in Reference [3] will be used in this work. It is an extension of the method proposed by
Glaister [1] to improve the second-order TVD scheme [18]. The upwind decomposition is
de�ned as

A±=P�±P−1A (24)

with A a general matrix and

�±=
( 1
2 [1± sign(�1)] 0

0 1
2 [1± sign(�2)]

)
(25)

where �1 = u+ c, �2 = u− c are the eigenvalues of the Jacobian matrix (8). At the same time,
the following second-order vectors are de�ned:

H± =
(
1∓ �t

�x
J±
)
G± (26)

so that the in�uence of the positive (+) and negative (−) eigenvalues is separated, and the
second-order TVD is formulated as [3]

(1− 1
2�tKn

i )�u
n
i =�t[(G+)ni−(1=2) + (G

−)ni+(1=2)]

+
�t
2
[(�+H+)ni−(1=2) + (�

−H−)ni+(1=2) − (�+H+)ni−(3=2) − (�−H−)ni+(3=2)] (27)

where �± are the �ux-limiting diagonal matrices [3]:

(�±)ni+(1=2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

 

(
[(H±)1]ni+(1=2)±1
[(H±)1]ni+(1=2)

)

. . .

 

(
[(H±)k]ni+(1=2)±1
[(H±)k]ni+(1=2)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(28)

with (H±)k the k component of the vectors H± and  the �ux-limiting function. In this work
the following will be used:

• Minmod [19]:  (r)= max[0;min(1; r)].
In transitions from subcritical to supercritical �ow, the above scheme (28) can enforce non-

physical discontinuities. To avoid this problem, the �rst-order terms can be rede�ned with no
alteration of the second-order terms H± [4]:

(G±)ni+(1=2) =
{
P�±P−1G∓ 1

4
max

k
(�k)

�u
�x

}n
i+(1=2)

(29)
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with:

(�k)ni+(1=2) =

⎧⎨
⎩
[�(�k)− |�̃k |]ni+(1=2) if (�k)ni ¡0 and (�

k)ni+1¿0

0 otherwise
(30)

this represents an additional viscosity, formulated in a simple form and able to be adapted to
both explicit and implicit schemes. For more details see References [3–5]. The second-order
TVD scheme with upwind source term is a conservative scheme and admits the following
wave decomposition (WD) [3]:

FTi = F
n
i ; GRi+(1=2) = (G

−)ni+(1=2) +
1
2 [(�

+H+)ni−(1=2) − (�−H−)ni+(3=2)]

GLi+(1=2) = (G
+)ni+(1=2) − 1

2 [(�
+H+)ni−(1=2) − (�−H−)ni+(3=2)]

(31)

being also TVD and stable provided that [3]:

CFL61 (32)

with CFL the Courant–Friedrichs–Lewy dimensionless number [20]. For the 1D shallow-water
�ow model this is

CFL=�tmax
i

( |u|+ c
�x

)n
i

(33)

3.2. First-order bidiagonal semi-explicit scheme

This is a two-step numerical scheme proposed in Reference [5], that can be outlined as

[(1 + �−)�u−]ni − (�−�u−)ni+1 =�t(G−)ni+(1=2)

[(1 + �+)�u+]ni − (�+�u+)ni−1 =�t(G+)ni−(1=2)

(1− ��tKn
i )�u

n
i = (�u

+ +�u−)ni

(34)

with G± de�ned as in (29) and the parameters �± as in Reference [5]:

�±
i = max

[
±�t
�x

(�±)ni − 0:9; �±
i±1 − 0:9; 0

]
(35)

where

�+ = max
k
(�k ; 0); �− = min

k
(�k ; 0) (36)

and the following correction to avoid boundary instability in a grid with N cells:

�+1 = �−
N = max(CFL− 0:9; 0) (37)

The scheme so de�ned is unconditionally stable. This de�nition involves a minor and
stabilizing correction to the formerly proposed in Reference [5].
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The scheme is conservative with a WD [5]:

FTi = F
n
i +

�x
�t
(�+�u+ − �−�u−)ni

GRi+(1=2) = (G
−)ni+(1=2) +

1
�t
[(�−�u−)ni+1 − (�−�u−)ni ]

GLi+(1=2) = (G
+)ni+(1=2) − 1

�t
[(�+�u+)ni+1 − (�+�u+)ni ] (38)

The method as de�ned here is open to di�erent options for the increments (�u+)n1 and
(�u−)nN at the boundaries. They must contain the information corresponding to the physical
(external) boundary conditions. As an example, if the inlet discharge Q∗ is the imposed
upstream boundary condition, the following will be written:

�Q+
1 = Q∗ − Qn

1 (39)

4. BOUNDARY CONDITIONS

A correct numerical model for unsteady �ow problems must be based not only on a numerical
scheme with good properties, but also on an adequate procedure to discretize the boundary
conditions. The theory of characteristics provides clear indications about the number of nec-
essary external boundary conditions to de�ne a well-posed problem [6]. As Figure 1 illus-
trates, when a characteristic curve de�ned in the x–t plane enters the computational domain,
the in�uence region associated to it is exterior to the domain, and therefore one external
boundary condition is required. This kind of boundary conditions is also called physical
boundary conditions. On the other hand, when the characteristic curve leaves the domain,
the in�uence region belongs to the computational domain and the information linked to that
characteristic curve depends exclusively on the interior points. This kind of boundary condi-
tions are also called numerical boundary conditions.
The speeds of propagation of information and the regions of in�uence in the x–t plane can

be obtained from the di�erential characteristic form of Equations (12). These are a set of

Figure 1. In�uence regions at the inlet and at the outlet for both subcritical and supercritical �ows.
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594 J. BURGUETE, P. GARC�IA-NAVARRO AND J. MURILLO

equations in the form

@wi

@t
+ �i

@wi

@x
= �i (40)

where �i are the propagation speeds. In the 1D shallow-water system they correspond to the
eigenvalues of the Jacobian matrix (8):

�1 = u+ c; �2 = u − c (41)

These velocities can be used to de�ne the characteristic curves bounding the regions of
in�uence of a given point on the x–t plane. In the 1D shallow-water model there are two
characteristic curves at every point. In regions of left to right supercritical �ow (u¿c) both
curves have a positive slope (�1¿0, �2¿0), and hence two physical boundary conditions
are required at the inlet and two numerical boundary conditions are required at the outlet.
However, in case of subcritical �ow, one curve has positive slope (�1¿0) and the other a
negative slope (�2¡0), requiring both physical and numerical boundary conditions at the inlet
and the outlet.
The most usual physical boundary conditions at the inlet are a discharge hydrograph Q(t)

or a water depth limnigraph h(t) in case of subcritical �ow and both together Q(t), h(t) in
case of supercritical �ow. Only in case of subcritical �ow, and only one physical boundary
condition is necessary at the outlet, being the most common practice to use a rating curve
of the type Q=Q(h) or a limnigraph h(t). Critical outlet or closed outlet can be considered
particular cases.
Numerical boundary conditions are those additional equations required to enable the correct

numerical resolution at the boundary points. They carry some kind of information from the
calculation domain. One of the most important mathematical properties concerning the methods
for numerical boundary conditions, established by Gustafsson [21], states that they can be up
to one order of approximation less than the numerical scheme used for the interior points
and still preserve the global accuracy. Therefore, �rst-order methods can be applied to the
boundary conditions when dealing with second-order methods for the rest of the points, and
zero-order methods in case of using a �rst-order numerical scheme.

4.1. Stabilization correction

It is important to remark that discontinuous boundary conditions can violate the stability
condition (33) due to sudden changes in u and c. When dealing with supercritical �ows,
2 variables, A∗ and Q∗, are imposed at the inlet, forcing therefore the values of u∗ and c∗.
In order to avoid stability problems we shall de�ne from (33) the size of the time step as

�t=CFL min
i

(
�x

|u|ni + cni
;

�x
|u|∗ + c∗

)
(42)

In case of subcritical �ow, only one of the variables, A∗ or Q∗, is imposed as physical
boundary condition. In order to avoid possible instabilities let us assume the worst case, that
of critical �ow:

u∗= c∗ ⇒ gA∗3

B∗ =Q∗2 (43)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:585–615



NUMERICAL BOUNDARY CONDITIONS FOR GLOBALLY MASS CONSERVATIVE METHODS 595

This equation is explicit if A∗ is known, and can be approximated if Q∗ is known. Once the
values of u∗ and c∗ at the boundary are estimated (42) can be applied.

4.2. Characteristic variable extrapolation (CVE)

There exist several methods based on characteristics. Among them, the most commonly used
are those of CVE. For instance, the �rst-order spatial extrapolation:

�wn+1
i+(1=2) = �wn+1

i+(3=2) (44)

valid, as stated before, to complement methods of �rst and second order. For �rst-order
methods the even simpler zero-order version can also be used:

�wn+1
i+(1=2) = 0 (45)

The conditions to be met by the variable extrapolation methods and di�erent numerical
schemes to preserve linear stability were generalized by Kreiss [22] and by Gustafsson
et al. [23] and were later applied by Yee et al. [8, 9] to �uid mechanics equations.
As an example, we shall consider the �rst-order spatial extrapolation method in the con-

text of the shallow-water equations. In subcritical �ow, the second di�erential characteristic
equation (12) is to be used as numerical boundary condition at the inlet since it is associ-
ated to a negative characteristic slope. Using the extrapolation of the di�erential characteristic
variable: {

1
2c
[(c+ u)�A − �Q]

}n+1
(3=2)

=
{
1
2c
[(c+ u)�A − �Q]

}n+1
(5=2)

(46)

At the outlet, the �rst di�erential characteristic variable must be used due to the associated
positive slope, that is

{
1
2c
[(c − u)�A+ �Q]

}n+1
N−(1=2)

=
{
1
2c
[(c − u)�A+ �Q]

}n+1
N−(3=2)

(47)

The following linearization is usually applied in order to simplify the resolution:

un+1
i+(1=2) ≈ un

i+(1=2); cn+1i+(1=2) ≈ cni+(1=2) (48)

where c and u can be de�ned using the Roe’s averages (19).
Expressions (46) and (47) are simpler in case of using the zero-order version:

[(c+ u)�A − �Q]n+1(3=2) = 0; [(c − u)�A+ �Q]n+1N−(1=2) = 0 (49)

The bidiagonal upwind scheme, as de�ned in (34), is open to the de�nition of the increments
(�u+)n1 and (�u

−)nN . From the information supplied by the physical boundary condition, the
zero-order temporal extrapolation of the variables can be used as follows:

[(c+ u)�A+ −�Q+]n1 = 0; [(c − u)�A− +�Q−]nN =0 (50)
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4.3. Wave decomposition (WD)

In Reference [3], a hybrid scheme was proposed based on conservative and characteristic
methods. A conservative numerical scheme is �rst applied neglecting the possible contributions
from cells external to the calculation domain, for instance,

(G±)nj =(H
±)nj =0 if j¡1 or j¿N (51)

in the considered schemes and with the correction at the boundaries described in (49). The
numerical increments in the variables obtained after this �rst step will be called �upi . It is
possible to get a relationship between the physical increments �uni assuming constant the
associated characteristic variable, as in the extrapolation methods described in the previous
subsection:

�wn = �wp (52)

This method is of �rst order.
As in the CVE methods, in case of subcritical �ow the second characteristic variable

(12) must be used at the inlet due to the negative propagation speed:

(c+ u)n1�An
1 −�Qn

1 = (c+ u)n1�Ap
1 −�Qp

1 (53)

and the �rst characteristic variable at the outlet due to the associated positive propagation
speed:

(c − u)nN�An
N +�Qn

N =(c − u)nN�Ap
N +�Qp

N (54)

Furthermore, in case of supercritical �ow at the outlet, both characteristic equations lead to

�An
N =�Ap

N ; �Qn
N =�Qp

N (55)

4.4. Local mass conservation (LMC)

This method, proposed by Jin and Fread [10], is based on the use of the discrete form of the
mass conservation equation as numerical boundary condition. This leads to

[��An
1 + (1− �)�An

2]�x + [��Q
n+1
(3=2) + (1− �)�Qn

(3=2)]�t =0

[��An
N + (1− �)�An

N−1]�x + [��Q
n+1
N−(1=2) + (1− �)�Qn

N−(1=2)]�t =0
(56)

The parameter �∈ [0; 1] is a kind of spatial weight and the parameter �∈ [0; 1] controls the
implicitness of the method. The method is of �rst order except for �= 1

2 that leads to second-
order accuracy in space and for �= 1

2 , that leads to second-order accuracy in time.

4.5. Semi-explicit mass conservation (SEMC)

The mass equation can be discretized using the semi-explicit upwind scheme (34) at the
boundary cells as follows:

[(1 + �−)�A−]nN − (�−�A−)nN+1 =−�t
�x

(�Qn
N+1 − �Qn

N )

[(1 + �+)�A+]n1 − (�+�A+)n0 =−�t
�x

(�Qn
1 − �Qn

0)

(57)
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where cells 0 and N +1 are exterior to the domain. The variations at those cells are assumed
nil, for simplicity,

�(A+)n0 ≈�(A−)nN+1 ≈ 0 (58)

and the value of the discharge at the exterior nodes is estimated as the physical external mass
contribution, denoted by �Mn

in at the inlet and �Mn
out at the outlet:

Qn
0�t=�Mn

in; Qn
N+1�t= −�Mn

out (59)

Hence, the SEMC boundary condition method for the semi-explicit upwind scheme is formu-
lated as

�(A+)n1 =
�Mn

in −�tQn
1

(1 + �+1 )�x
; �(A−)nN =

�Mn
out + �tQn

N

(1 + �−
N )�x

(60)

4.6. Global mass conservation (GMC)

One of the main problems common to all the boundary conditions methods presented up to
here is that they always generate some amount of error in the GMC. The GMC, or conservation
of the �rst integral, is an important and desirable property of numerical schemes.
The method of GMC [5, 12] for 1D schemes is based on enforcing the integral form

of the mass conservation extended to all the computational domain in combination with a
conservative scheme for the interior points to generate the numerical boundary condition.
This method is sensitive to the form the mass of the system is evaluated and to the physical
boundary conditions.
In a domain discretized using N cells, the total mass is de�ned as

M =
N∑
i=1

Ai�x (61)

so that the mass increment �Mn in one time step is

�Mn=
N∑
i=1
�An

i�x (62)

In a �rst step, a conservative scheme de�ned by a nodal �ux FTi (as in (31) in the explicit
case or (38) in the implicit case) is used all over the domain neglecting contributions from
outside cells as in Section 4.3. The cross-section increments predicted in one time step are

�Ap
i = − �t

�x
(�QR

i+(1=2) + �QL
i−(1=2)) (63)

The total numerical mass variation �Mp produced by the scheme is therefore:

�Mp=
N∑
i=1
�Ap

i �x= −�t
N∑
i=1
(�QL

i−(1=2) + �QR
i+(1=2))=�t(QT

1 − QT
N ) (64)

Since the scheme used is conservative, this variation is only due to the boundaries and can be
split into numerical contribution at the inlet �Mp

in and at the outlet �Mp
out in the following

form:

�Mp=�Mp
in + �Mp

out ; �Mp
in =�tQT

1 ; �Mp
out = −�tQT

N (65)
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If the physical boundary condition is, for instance, a certain mass input at the inlet �Mn
in or

at the outlet �Mn
out, in order to ensure the GMC of the scheme the numerical mass increment

must be corrected. This is achieved by means of additional contributions called �M a
in and

�M a
out, so that:

�Mn
in =�M a

in + �Mp
in =�M a

in + �tQT
1

�Mn
out =�M a

out + �Mp
out =�M a

out −�tQT
N

(66)

When using an explicit scheme, the additional mass contributions at the boundaries a�ect
only one cell at each boundary so that the following is proposed:

�M a
in = (A

n+1
1 − Ap

1 )�x; �M a
out = (A

n+1
N − Ap

N )�x (67)

Inserting this in (66), the rule de�ning the GMC method for an explicit scheme is obtained:

An+1
1 =Ap

1 +
�Mn

in −�tQT
1

�x
; An+1

N =Ap
N +

�Mn
out + �tQT

N

�x
(68)

Within the second-order TVD scheme, inserting the nodal �ux (31), this is,

An+1
1 =Ap

1 +
�Mn

in −�tQn
1

�x
; An+1

N =Ap
N +

�Mn
out + �tQn

N

�x
(69)

When using, on the other hand, implicit schemes, the information must propagate all over
the domain for stability reasons. A propagation of the mass contributions at the boundaries
can be made in the same form as in the semi-explicit upwind bidiagonal scheme (34):

�Ac±
i =

(��A)c±i±1
1 + �±

i
; �Qc±

i =
(��Q)c±i±1
1 + �±

i

�An+1
i =�Ap

i +�Ac+
i +�Ac−

i ; �Qn+1
i =�Qp

i +�Qc+
i +�Qc−

i

(70)

De�ning the parameters:

�+1 = �−
N =1; �±

i =
(��)±i±1
1 + �±

i
; 	±=

∑
i
�±
i (71)

the following holds:

�Ac+
i = �+i �Ac+

1 ; �Ac−
i = �−

i �Ac−
N (72)

hence

�M a =
∑
i
�Aai�x=�x

∑
i
(�Ac+

i +�Ac−
i )

=�x
∑
i
(�+i �Ac+

1 + �−
i �Ac−

N )=�x(	+�Ac+
1 + 	−�Ac−

N ) (73)

so that the additional mass contributions at the boundaries can be expressed:

�M a
in =�x	+�Ac+

1 ; �M a
out =�x	−�Ac−

N (74)
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And, inserting into (66):

�Ac+
1 =

�Mn
in −�tQT

1

	+�x
; �Ac−

N =
�Mn

out + �tQT
N

	−�x
(75)

So, �nally, the GMC method for the implicit scheme, after applying (75) at the boundaries,
propagates the modi�cations using two bidiagonal steps following (70). In the case of the
semi-explicit upwind scheme, using the nodal �ux (38), the following two expressions are
derived to enable the start of the second sweep:

�Ac+
1 =

�Mn
in −�tQn

1 −�x(�+1 �Ap+
1 − �−

1 �Ap−
1 )

	+�x

�Ac−
N =

�Mn
out + �tQn

N +�x(�+N�Ap+
N − �−

N�Ap−
N )

	−�x
(76)

where �Ap+
1 and �Ap−

N represent the increments used to start the �rst sweep of the semi-
explicit method. In this method, the choice of the value of these increments is open in the
�rst sweep or predictor step. Either CVE (50) or SEMC (60) can be used for instance. On
the other hand, the increments �Ap−

1 and �Ap+
N are obtained as a result of the completion

of the �rst sweep.

4.7. Subcritical correction

The CVE boundary conditions are independent of the time step size used. However, LMC,
SEMC and GMC boundary condition methods depend on that value. For instance, in mass
conservation based methods, if an important increase in discharge is imposed upstream and
applied in a short time step, these methods may produce only a small variation in the upstream
water depth and lead to unrealistic supercritical �ows. In that case, at the same time, no
numerical information would be extracted from the computational domain. This possibility
must be avoided as much as possible. Figure 3, corresponding to Test 1 that will be described
later, shows this e�ect.
Let us assume that the upstream physical boundary condition is the discharge Q∗

1 , and be Acr1
the critical cross section corresponding to that discharge. At the same time, Ap1 represents the
cross section predicted by the numerical scheme plus the corresponding numerical boundary
condition. The following is proposed:

An+1
1 = max(Ap

1 ; A
cr
1 ) (77)

If, on the other hand, the physical boundary conditions is the upstream cross section A∗
1 , Q

cr
1

the corresponding critical discharge and Qp
1 the discharge predicted by the numerical scheme

plus numerical boundary condition, the following is proposed:

Qn+1
1 = min(Qp

1 ; Q
cr
1 ) (78)
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5. TESTS WITH ANALYTICAL SOLUTION

One of the best forms to study the performance of the numerical schemes is to compare their
numerical solution with the analytical solution in problems in which this exists.

5.1. Discontinuous boundary conditions

If a discontinuity is enforced to enter the upstream boundary of an ideal �at and smooth
channel of uniform depth and discharge so that the �ow properties on both sides obey the

Figure 2. Trapezoidal channel geometry.

Table I. Values of water depth, discharge and shock speed
for the test cases of discontinuous boundary conditions.

Test 1 Test 2

hi (m) 0.4 0.5
h∗ (m) 1 1
Q∗ (m3=s) 24.86021 48.83006
u∗ (m=s) 2.486021 4.883006
U (m=s) 4.143385 6.510675
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Figure 3. Water depth, imposing discharge at the inlet with the second-order TVD scheme, �x=1m,
CFL=0:01, and GMC: (a) without correction; and (b) with subcritical �ow correction.
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Figure 4. Water depth, imposing the discharge at the inlet, using the
second-order TVD scheme, �x=10m, CFL=0:9 and di�erent methods
for the upstream numerical boundary condition: (a) �rst-order spatial CVE;

(b) WD; (c) LMC (�= � = 1
2); and (d) GMC.

Rankine–Hugoniot equations (17), the discontinuity will propagate unchanged along the chan-
nel at a constant speed. From the initial conditions, the water depth hi and velocity ui are
known in the channel. Imposing h∗ or u∗ at the boundary, the other variable and the front
speed can be worked out from (17). Solving these equations for the discontinuity, we have

A∗(u∗ − U ) = Ai(ui − U )

A∗(u∗ − U )2 + gI1∗ = Ai(ui − U ) + gI1i
(79)

hence,

U = ui +

√
g
A∗

Ai

I1∗ − I1i
A∗ − Ai

; u∗=U +
Ai

A∗ (ui − U ); Q∗=A∗u∗ (80)

In the case of a prismatic trapezoidal channel as in Figure 2, and still-water initial conditions
(ui=0):

A=�0h+ Zh2; I1 = 1
2�0h

2 + 1
3Zh

3 (81)
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Figure 5. Water depth, imposing the water depth at the inlet, using the second-order TVD
scheme, �x=10m, CFL=0:9 and di�erent methods for the upstream numerical boundary condition:

(a) �rst-order spatial CVE; (b) WD; (c) LMC (�= � = 1
2); and (d) GMC.

in that case:

U =

√
g
�0h∗ + Zh∗2

�0hi + Zh2i

1
2�0(h

∗2 − h2i ) +
1
3Z(h

∗3 − h3i )
�0(h∗ − hi) + Z(h∗2 − h2i )

u∗ =U − �0hi + Zh2i
�0h∗ + Zh∗2 U; Q∗=[�0(h∗ − hi) + Z(h∗2 − h2i )]U (82)

This solution gets much simpler in the case of a rectangular section:

U =

√
g
h∗

hi

h∗ + hi

2
; u∗=

(
1− hi

h∗

)
U; Q∗=�0(h∗ − hi)U (83)

or triangular:

U =

√
g
3

h∗2

h2i

(h∗3 − h3i )
(h∗2 − h2i )

; u∗=

[
1−

(
hi

h∗

)2]
U; Q∗=Z(h∗2 − h2i )U (84)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:585–615



NUMERICAL BOUNDARY CONDITIONS FOR GLOBALLY MASS CONSERVATIVE METHODS 603

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200

D
ep

th
 (

m
)

x (m)

CVE (t=10s)
CVE (t=20s)

Exact (t=10s)
Exact (t=20s)

GMC (t=10s)
GMC (t=20s)
Exact (t=10s)
Exact (t=20s)

SEMC (t=10s)
SEMC (t=20s)
Exact (t=10s)
Exact (t=20s)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200

D
ep

th
 (

m
)

x (m)(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

0 50 100 150 200

D
ep

th
 (

m
)

x (m)(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200

D
ep

th
 (

m
)

x (m)

GMC (t=10s)
GMC (t=20s)
Exact (t=10s)
Exact (t=20s)

(d)

Figure 6. Water depth, imposing the discharge at the inlet, using the �rst-order
semi-explicit upwind scheme, �x=5m, CFL=4 and the numerical boundary condi-
tion methods: (a) zero-order temporal CVE; (b) SEMC; (c) GMC with CVE in the

predictor step; and (d) GMC with SEMC in the predictor step.

Two test cases are next proposed to study the accuracy of the resulting combinations of
proposed numerical schemes for the interior points and methods for the numerical boundary
conditions. First, the propagation of a non-transcritical discontinuity in a rectangular channel
(�=10m) and, second, the propagation of a transcritical discontinuity in a triangular channel
(Z =10). The details of both test cases are gathered in Table I. The mass error produced in
each case will be computed as follows:

Emass = 100
|Mexact − Mnumerical|

Mexact
%

5.1.1. Test 1: Subcritical case. In Figure 3 the second-order explicit TVD scheme and the
GMC method with and without subcritical correction are applied to Test 1. The results have
been obtained using a uniform grid of �x=1m in order to avoid numerical di�usion as much
as possible. In Figure 3(a) the GMC method devoid of correction generates a very low water
depth at the inlet, hence unphysical supercritical �ow that gives rise to a moving hydraulic
jump to connect with the downstream conditions.
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Figure 7. Water depth, imposing the discharge at the inlet, using the �rst-order
semi-explicit upwind scheme, �x=5m, CFL=10 and the numerical boundary con-
dition methods: (a) zero-order temporal CVE; (b) SEMC; (c) GMC with CVE in the

predictor step; and (d) GMC with SEMC in the predictor step.

Figures 4 and 5 display the numerical results obtained in Test 1 imposing, respectively,
discharge and water depth at the upstream boundary and using the second-order explicit TVD
scheme and four di�erent approaches for the discretization of the upstream numerical boundary
condition. A uniform grid of �x=10m was used in order to be able to identify the di�erent
solutions. The plots show only slight visual di�erences among the di�erent methodologies.
It can be remarked that the WD method is the less accurate and the spatial �rst-order CVE
the less oscillatory; however, the GMC is the only method achieving a reduction in the mass
error to machine precision.
Figures 6–9 are a plot of the numerical results from the semi-explicit upwind scheme using

four di�erent approaches for the discretization of the upstream numerical boundary condition.
Figures 6 and 7 correspond to the case of imposing the upstream discharge and display the
results of using, respectively, CFL=4 and 10. Figures 8 and 9 correspond to the case of
imposing the upstream water depth and display the results of using, respectively, CFL=4
and 10. A uniform grid of �x=5m was used in order to reduce the numerical di�usion.
It can be seen that, in general, the solution in presence of discontinuous boundary conditions
using this scheme is less accurate than using the explicit scheme. If the interest is put on the
front tracking detail, these solutions can be considered unacceptable. The solution is almost
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Figure 8. Water depth, imposing the water depth at the inlet, using the �rst-order
semi-explicit upwind scheme, �x=5m, CFL=4 and the numerical boundary condi-
tion methods: (a) zero-order temporal CVE; (b) SEMC; (c) GMC with CVE in the

predictor step; and (d) GMC with SEMC in the predictor step.

identical when the GMC correction is applied to both predictor approaches, the spatial zero-
order CVE method or the SEMC technique. Despite the visual similarity among the solutions,
this correction is the only method leading to an exact mass conservation. Between the two
predictor options, the results show that the CVE leads to the worst solution (Tables II and III).

5.1.2. Test 2: Supercritical case. Figure 10 contains several discharge and water depth plots
of the solutions obtained for Test 2 using the two numerical schemes considered at
di�erent times. As the inlet �ow is supercritical, two upstream physical boundary conditions
are imposed and no upstream numerical boundary conditions are present. The numerical solu-
tion provided by the semi-explicit scheme is more accurate in this case than in the subcritical
in�ow test case for all CFL values due to the fact that both variables, discharge and water
depth, are imposed simultaneously. However, as there is no freedom to enforce the global
conservation, a non zero mass error is introduced in the solution in all cases (see Table IV).

5.2. Steady �ow in a channel

MacDonald [24, 25] derived and proposed several steady open channel �ow test cases with
analytical solution. All of them involved variable bottom level and bed friction. In order to
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Figure 9. Water depth, imposing the water depth at the inlet, using the �rst-order
semi-explicit upwind scheme, �x=5m, CFL=10 and the numerical boundary con-
dition methods: (a) zero-order temporal CVE; (b) SEMC; (c) GMC with CVE in the

predictor step; and (d) GMC with SEMC in the predictor step.

Table II. Percentage mass error, imposing discharge or water
depth at the inlet, produced after 20 s by the di�erent numeri-
cal boundary condition methods using the second-order TVD

scheme with �x=10m and CFL=0:9.

Discharge Water depth

CVE 2.46 3.07
WD 5.33 4.14
LMC 1.05 2.90
GMC 0 0

check the in�uence of the numerical boundary condition method adopted on the steady �ow
solution, one of them has been selected. It is a rectangular cross-section prismatic channel
150m long and 10m wide where a discharge of 20m3=s �ows in subcritical regime. The
value of the Manning roughness is 0:03m−1=3s and the steady water depth follows:

h=0:8 + 0:25 exp

[
−33:75

(
x − 75
150

)2]
(85)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:585–615



NUMERICAL BOUNDARY CONDITIONS FOR GLOBALLY MASS CONSERVATIVE METHODS 607

Table III. Percentage of mass error produced by the di�erent numeri-
cal boundary condition methods and the �rst-order semi-explicit method,

imposing discharge or water depth at the inlet, after 20 s.

CFL=4 CFL=10

Discharge Water depth Discharge Water depth

CVE 53.07 40.99 121.24 85.85
SEMC 76.98 68.64 70.87 65.80
GMC (CVE) 0 0 0 0
GMC (SEMC) 0 0 0 0

Table IV. Percentage of mass error produced by
the second-order TVD scheme with �x=10m and
CFL=0:9 and the �rst-order semi-explicit scheme with

�x=5m, and with CFL=4 and 10 after 20 s.

Mass error (%)

TVD (CFL=0:9) 0.89
Semi-explicit (CFL=4) 1.52
Semi-explicit (CFL=10) 2.20

The bottom level can be calculated from the slope that, according to (1), is

S0 = Sf +
@h
@x

− Q2

gA3
@A
@x

(86)

In Figure 11 the exact longitudinal pro�les of water depth, water level and bottom level have
been plotted.
Figures 12–15 display the solutions obtained with the di�erent methods. It is worth noting

that, although important di�erences were found in the discontinuous unsteady cases, all the
methods considered here, both for interior points as well as for numerical boundary conditions,
lead to identical results in the steady case. The reason is that this example represents a very
di�erent kind of �ow and is much less challenging for the numerical method at the boundaries.
In this case, the solution is determined by the numerical scheme used for the interior points
and the treatment of the source terms. The exact conservation of the steady discharge is a
direct consequence of the non-pointwise discretization of the source terms [4].

6. RIVER FLOW APPLICATION: �ESERA RIVER

�Esera River is a Spanish river on the left bank of the Ebro River basin. It �ows through a
touristic mountain area of the Pirynees. A study has been carried on led by the interest to
evaluate the risk of inundation in a few nearby camping sites. It is a typical, irregular and
sloping mountain river (average slope around 4%, Figure 16(a)). Thirty-two measured cross
sections were used to de�ne the 1 km long river reach bed form, a base discharge of 10m3=s
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Figure 10. (a), (b) and (c) discharge; (d), (e) and (f) water depth: with the schemes (a) and (d)
second-order TVD with �x=10m and CFL=0:9, (b), (c), (e) and (f) �rst-order semi-explicit with

�x = 5m, (b), (e) CFL=4, (c) and (f) CFL=10.

to state the initial �ow conditions, and a high roughness Manning coe�cient n = 0:031m−1=3s
to model the stony bed of average stone diameter 20 cm, according to Strickler [26].
Four �ooding discharges of 236; 344; 414 and 563m3=s, corresponding to return periods 10,

50, 100 and 500 year, respectively, were assumed in the study. Due to the lack of gauging
points and the sloping character of the river bed, a critical �ow condition was assumed at
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Figure 12. Discharge in the MacDonald’s test case with the second-order TVD scheme, �x=0:375m,
CFL=0:9 and the numerical boundary condition methods: (a) �rst-order spatial CVE; (b) WD;

(c) LMC (�= �= 1
2); and (d) GMC.
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Figure 13. Water depth in the MacDonald’s test case with the
second-order TVD scheme, �x=0:375m, CFL=0:9 and the
numerical boundary condition methods: (a) �rst-order spatial

CVE; (b) WD; (c) LMC (�= �= 1
2); and (d) GMC.

the inlet in all these cases. There was no �eld information either at the reach outlet so that a
critical out�ow condition was assumed in case of downstream subcritical �ow. At the upstream
boundary, the GMC method (with SEMC predictor step in the semi-explicit scheme) was used
for the numerical condition discretization together with the subcritical �ow correction.
The calculation was performed in two steps. In a �rst step, the steady base �ow was

determined by sudden introduction of the base discharge over dry bed initial conditions. After
convergence, this led to the initial conditions for the second run. Figure 16(b) is a plot
of the water depth pro�les corresponding to the base �ow discharge and the four inundation
discharges all �owing in steady state as computed with the second-order TVD explicit scheme.
Note the distorted scale in the �gure.
Figure 17 is a comparison of the numerical results provided by the two numerical schemes

considered in this paper for the �rst run. They contain three snapshots of the transient solution
generated by the discontinuous boundary condition over initial dry bed. It is important to
remark that the semi-explicit scheme is able to supply a solution almost identical to the
explicit scheme using a CFL ten times bigger. The total CPU time used by the two schemes
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Figure 14. Discharge in the MacDonald’s test case with the upwind semi-explicit scheme, �x=0:375m,
CFL=10 and the numerical boundary condition methods: (a) zero-order temporal CVE; (b) SEMC;

(c) GMC with CVE in the predictor step; and (d) GMC with SEMC in the predictor step.

was 17 s in the explicit case and 2 s in the semi-explicit case in a AMD Athlon 2600 laptop
computer.
Figure 18 is a comparison of the numerical results provided by the two numerical schemes

considered in this paper for the calculation of the advance of the 500 year discharge introduced
as a discontinuous boundary condition. They contain three snapshots of the transient solution
over the initial base �ow conditions. The semi-explicit scheme is able to supply a solution
to this exacting unsteady �ow case even using a CFL=100. During the advance phase, the
semi-explicit solution is more di�usive than the explicit solution but they are identical when
the steady state is reached. The total CPU time used by the two schemes was 26 s in the
explicit case and 0:3 s in the semi-explicit case in the same computer.

7. CONCLUSIONS

This paper is a contribution to the improvement of fully conservative methods for conservation
laws. The emphasis has been put on the fact that, apart from a good conservative scheme for
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Figure 15. Water depth in the MacDonald’s test case with the upwind semi-explicit
scheme, �x=0:375m, CFL=10 and the numerical boundary condition methods:
(a) zero-order temporal CVE; (b) SEMC; (c) GMC with CVE in the predictor step; and

(d) GMC with SEMC in the predictor step.
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Figure 17. Longitudinal pro�les of water depth (a), (c) and discharge (b), (d) in the �Esera
River at three times after the sudden introduction of the base discharge over dry bed
initial conditions. (a), (b) using second-order TVD explicit scheme with CFL=0:9 and (c),

(d) using upwind semi-explicit scheme with CFL=10. �x=1m.

the interior points and a correct discretization of the source terms, it is important to know
which are the best options for the treatment of the boundary conditions. A revision of the
most widely used methods of discretization of the numerical boundary conditions has been
supplied and a di�erent method, based on the conservation of the integral of the mass over
the whole domain, has been also considered. In order to quantitatively compare the results
provided by the di�erent methods, two new test cases of unsteady discontinuous �ow with
analytical solution have been proposed.
All the methods considered for the numerical boundary condition discretization are able

to solve accurately unsteady �ow with discontinuities at the boundary when combined with
explicit schemes for the interior points. However, only the GMC method leads to an exactly
conservative solution. When combined with a two-step semi-explicit method using high CFL
values the results are less accurate in general. Even with the loss of accuracy, global mass
conservation is achieved only if the GMC method is implemented. In all cases, the necessity
to include a subcritical correction at the inlet has been detected mainly when using small time
steps.
In cases of steady �ow, the GMC method does not improve the quality of the solutions

over that of other options among those considered here. The GMC method has also been
applied to a full-scale case of unsteady river �ow leading to very satisfactory results both
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Figure 18. Longitudinal pro�les of water depth (a), (c) and discharge (b), (d) in the �Esera River at
three times after the sudden introduction of the 500 year return period discharge over base �ow initial
conditions. (a), (b) using second-order TVD explicit scheme with CFL=0:9 and (c), (d) using upwind

semi-explicit scheme with CFL=100. �x=1m.

in combination with the explicit and the semi-explicit scheme. When using the semi-explicit
scheme, accurate and conservative solutions have been obtained using CFL=100.
The GMC method described can be adapted to any conservative method used for the interior

points. It is simple and able to provide fully conservative numerical solutions in presence of
both steady and unsteady continuous or discontinuous solutions.
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